Low-Stress Silicon Cladding for Surface Finishing Large UVOIR Mirrors, Phase I

Completed Technology Project (2013 - 2013)

Project Introduction

In this Phase I research, ZeCoat Corporation will develop an affordable, lowstress silicon cladding process which is super-polishable for large UVOIR mirrors. The proposed ion-assisted evaporation process is directly scaleable to SiC mirrors several meters in diameter. The process is based on a novel, low temperature, ion-assisted, evaporation technique (IAD), whereby the coating stress of a silicon film may be manipulated from compressive to tensile, in order to produce a near-zero net stress for the complete layer. A cladding with little intrinsic stress is essential to minimize bending that would otherwise distort the figure of very lightweight mirrors. Current methods to produce a polishable silicon cladding utilize CVD processes that produce highly stressed Si coatings. The current processes require high-temperatures (hundreds of degrees Celsius) and are not readily scaleable to large mirrors. CVD Si cladding is currently limited to mirror substrates less than 1-meter in diameter. The proposed IAD process produces little heat, and the mirror size is limited only by the size of the vacuum chamber. Large silicon carbide (SiC) mirrors (3-4 meters in diameter) are being considered for future space-based UVOIR astronomy missions. These lightweight mirrors will likely require a highly-polishable layer of silicon (10 to 50 microns) applied on top of the SiC. A relatively thick layer of Si is desirable for the purpose of reducing figuring time and for achieving a super-polished surface, suitable for UV astronomy. Normal incidence 4-meter class UVOIR telescopes have been cited as a high priority by multiple government review panels including; the National Research Council's (NRC) study of NASA's Space Technology Roadmap and Priorities, The Office of the Chief Technologist, The Cosmic Origins Program and NWNH Decadal.

Primary U.S. Work Locations and Key Partners

Low-Stress Silicon Cladding for Surface Finishing Large UVOIR Mirrors

Table of Contents

Project Introduction	1	
Primary U.S. Work Locations		
and Key Partners	1	
Project Transitions		
Images	2	
Organizational Responsibility	2	
Project Management		
Technology Maturity (TRL)	2	
Technology Areas	3	
Target Destinations	3	

Small Business Innovation Research/Small Business Tech Transfer

Low-Stress Silicon Cladding for Surface Finishing Large UVOIR Mirrors, Phase I

Completed Technology Project (2013 - 2013)

Organizations Performing Work	Role	Туре	Location
ZeCoat Corporation	Lead Organization	Industry	Torrance, California
Jet Propulsion Laboratory(JPL)	Supporting Organization	NASA Center	Pasadena, California

Primary U.S. Work Locations

California

Project Transitions

O

May 2013: Project Start

November 2013: Closed out

Closeout Documentation:

• Final Summary Chart(https://techport.nasa.gov/file/140447)

Images

Project Image

e/132815)

Low-Stress Silicon Cladding for Surface Finishing Large UVOIR Mirrors (https://techport.nasa.gov/imag

Organizational Responsibility

Responsible Mission Directorate:

Space Technology Mission Directorate (STMD)

Lead Organization:

ZeCoat Corporation

Responsible Program:

Small Business Innovation Research/Small Business Tech Transfer

Project Management

Program Director:

Jason L Kessler

Program Manager:

Carlos Torrez

Principal Investigator:

David Sheikh

Technology Maturity (TRL)

Small Business Innovation Research/Small Business Tech Transfer

Low-Stress Silicon Cladding for Surface Finishing Large UVOIR Mirrors, Phase I

Completed Technology Project (2013 - 2013)

Technology Areas

Primary:

- **Target Destinations**

The Moon, Mars, Outside the Solar System, The Sun, Earth, Others Inside the Solar System

